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PARTIAL INTERACTION BETWEEN ELASTICALLY
CONNECTED ELEMENTS OF A COMPOSITE BEAM

A. O. ADEKOLA

Department of Civil Engineering, University of Lagos, Nigeria

Abstract-This paper deals mainly with interaction of the elements of composite beams of steel and concrete.
An interaction theory which takes account of slip, uplift and friction effects is formulated without. as in existing
theories. assuming equal curvatures of the interacting elements. The two resulting simultaneous differential
equations connecting the uplift tension arising from differential deflexions of the two elements with the axial
force within each of the elements are solved by a finite-difference approach.

The results of computations for a typical composite section. for the case of zero interface coefficient of friction
but based on experimentally determined shear connection and foundation moduli are presented.

NOTATION

ac cross-sectional area of a connector
d half depth of lower element (symmetrical steel joint)
ea common interface strain in the top element
e. common interface strain in the lower element
lXa = (EaAa) modulus of elasticity x area: top element
lXa = (E.A b) modulus of elasticity x area: lower element
{fa = (EaIa) flexural rigidity of top element
fib = (Ebib) flexural rigidity of lower elemen t
Faxial force in the top or bottom element
h distance between centroidal axes of top and bollom elements
I second moment of area
ks shear connexion modulus (i.e. force per unit slip per unit length)
k, uplift tension modulus or foundation modulus (i.e. force per unit uplift per unit length)
L span of simply supported beam
M. moment in top element
M. moment in bottom element
M external applied moment
Qa shear in the top element
Qb shear in the lower element
T uplift force per unit length
t half depth of top element
V ex ternal shear
w intensity of applied uniformly distributed loading
x longitudinal axis
y vertical deflexion
Za distance from neutral axis of the top element
Z. distance from neutral axis of the bottom element
I' slip at the interface of the elements
r shear per unit length
(j direct stress
II coefficient of friction
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INTRODUCTION

WHEN two elements capable of resisting bending moments are elastically connected together
at an interface, interaction, partial or complete, between the two elements takes place.
Where the elastic connexion is flexible differential direct strains at the common interface
exist resulting in slip, and differential deflexions may also result giving rise to uplift between
the two elements.

Earlier works on this subject [1~3J have attempted to deal with interaction in composite
beams ofsteel and concrete and in a ship's hull and its superstructure. In this paper, however,
only interaction of composite beams of steel and concrete is considered. The formulations
of existing works take account of either differential strains only, or of differential deflexions
only, but not both together. Observations on composite beams [4J of steel and concrete
indicate that both slip and uplift occur simultaneously where the elastic connexion is
flexible.

A single theory of interaction taking both slip and uplift effects into account is presented
assuming bending theory but ignoring shear lag effects. Differential equations governing
the relation between uplift forces and the axial forces are formulated for the region of
positive uplift as well as the region of negative uplift for which frictional effects are in
corporated. This friction arises as a result of the pressure (i.e. negative uplift) at the support
ends of the beam and the sliding at the interface of the two elements.

FORMULATION OF THE THEORY

Each element of a composite member is assumed to behave separately in accordance
with simple bending theory, so that the longitudinal stress distribution over the depth of
the entire composite section is not necessarily colinear. In addition it is assumed that the
rate of change of the axial force is directly proportional to slip, and uplift force is directly
proportional to differential deflexion. This last assumption implies the existence of two
moduli, one which depends on the ability of the connectors to resist slip and the other
which depends on the resistance of the connectors to uplift in regions where separation
occurs, or the compressibility of the concrete bearing on the steel joist where uplift is
negative. A difficulty arises in estimating foundation modulus in respect of negative uplift
for which no experimental values exist and also in knowing beforehand over what portion
of a beam this negative uplift will exist.

Foundation modulus and shear modulus

Shear connexion modulus has been shown in push-out tests to depend on the properties
and dimensions of shear connectors as well as the properties of the surrounding concrete.
Usually in the analysis of composite beams a continuous shear modulus is obtained by
dividing an experimentally determined modulus for the type of connector to be used by
the discreet longitudinal spacing of the connectors and multiplied by the number of con
nectors at the cross-section considered. Foundation modulus in respect of positive uplift
depends largely on the elastic properties and the dimensions and spacing of the connectors
and is usually determined experimentally from pull out tests of shear connectors embedded
in concrete [5].
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Frictional e./Jects

Frictional resistance in the region of negative uplift will contribute to shear resistance
at the common interface thereby reducing the load on the shear connectors in that region.
This tendency will be reflected in reduced magnitudes of slip in these regions. However
the portion of the beam over which friction is operative cannot be uniquely predetermined
so that an iterative procedure assuming zero coefficient of friction initially would be
necessary. The solution for zero coefficient of friction will indicate approximately the
regions of negative uplift and the calculation then repeated introducing the frictional
coefficient in the appropriate regions in the finite difference relations discussed under
Method of Solution.

FIG. I

r-~l
w I

1 T~I --- F+!iF

--1- - Q.,+!iQ.,
I
I

h

d

{ f··..I -~ F+5F
Id
~

Ot. +5Ot.

FIG. 2

Consider the equilibrium of an element of length i5x of the composite section shown in
Fig. 2. The equations of equilibrium are as given below

Upper concrete element Lower steel element

bQa = -(w+ T)i5x

bF = rbx

bMa = Qai5x-tbF

(la)

i5Q" = Ti5x

bF ri5x

bM" = Q"bx-d .i5F.

(lb)
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Furthermore the external moment at any cross-section of the beam will be resisted by the
sum of the moments in the upper and lower elements plus the couple arising from the
axial forces in the two elements. Hence

M = Ma+Mb+F. h

From the last of equations (I a) and (I b),

d2 M dQa d 2 F
d_~2a = d~ -t. Z:f~i'

(2)

Writing the bending moments in terms of deflections and substituting for Q these equations
become

(3a)

(3b)

(5)

The tension T arises from the deformation of the elastic connexion due to differential
displacement between the two elements at their interface, so that

T = k/(Yb- Ya)' (4)

Differentiating equation (4) four times with respect to x and substituting for d4Ya/dx4
and d4Yh/dx4 from equations (3a) and (3b) yields

~:~+k,L~:+j~}T-k,{X~-/~~} .~:~ +~~~' = o.

Again differentiating equation (4) twice and substituting for curvatures in terms ofmoments
and flexural rigidities and rearranging gives

(6)

From equations (2) and (6) the moments in the upper and lower elements are

(7a)

(7b)

(8)

The rate of change of slip at the common interface at any point is equal to the differential
strain at that point. Hence

di' F Mbd F Mat--- = Cb-Ca = ---------+-------
dx ab fin aa fJa

= {~+.~_+ __h2_} F---~-- M+[dfJa-tlib] ~~~
eta etb fJa + lib' fJa + fJb' klfJa + lib) . dx 2

.
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The axial force F transferred from the lower element to the upper element by means of
the elastic shear connexion is given by F = JksY dx, for regions of positive uplift, or
F = Jks}' dx +JpC dx, for regions of negative uplift, where C is the negative uplift force/unit
length of beam in the negative uplift regions and equals T. Hence

d 2 F dy
-d2 = k'-dx x

d 2 F dy dT
- = k -+11-
dx2 'dx dx

according as whether the uplift is positive or negative.
Substituting for dy/dx from equation (8) and rearranging gives

(9b)

The expression within the square being incorporated only in regions of negative uplift
tension.

Equations (5) and (10) give the complete solutions for axial force and uplift force from
which slip, differential deflexions and stresses can be determined.

If k t is infinite, uplift tensions will not be determinable from equation (5) since, for T
to be finite, Yb - J'a must be zero and equation (10) becomes the well known Newmark
equation.

Deflexions can be found by using equation (3a) or (3b) together with equation (4).
The stresses are given by

(11)

(12)

METHOD OF SOLUTION

The two equations connecting uplift tension and axial force are solved by a method
suggested by Fox [6] for solving two-point boundary value problems involving differential
equations of orders higher than two. In order to achieve good accuracy in the solution of
the differential equations by finite differences, the equations are rearranged such that no
derivative higher than the second order occurs. Thus equation (5) is modified by assuming
a function.

(13)

(14)



1130 A. O. ADEKOLA

whilst equation (10) takes the form

~:~-ks{~+:b +fi~>t'7iJ .F-t{~:::~X~} u-
d
dx

( 15)

With this rearrangement there will be three unknowns U, T and F for each node point
of a composite beam divided up in regular intervals.

If the three unknowns at each node are all designated by x's say, then for a central node
point number, /1, and its two adjacent node points, n - 1 and n+ I, the numbering pattern
of Fig. 3 would emerge for insertion into finite difference relations for the governing
differential equations (13), (14) and (15).

The pattern of the resulting matrix of the finite difference relations embodying the
coefficients of the unknown's is a square matrix arranged in a diagonal band of eight
coefficients (except for the first three and last three rows), the other elements being zero
elements. The right hand side of the matrix relation involves the values of the known
external bending moment and the boundary conditions.

Boundary conditions

In the case of a simply supported system where the length of the upper elements is the
same as that of the lower the following conditions apply:

(i) The moments in the upper and lower elements are both zero at the supports; i.e.
at x = 0 and x = L, U 0

(ii) By differentiating equation (4) thrice, the following relation results

1 d 3 T d 3Yb d 3Ya
kr . dxJ dxJ dx J

>

1 dMb I dMa

lib' dx -7~'~dx

Qb Qa
/ib fia'

Since the slab is connected to the steel beam by means of a continuous foundation
modulus, then at the supports the steel beam would resist all of the external shear force at
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that point only. Hence Qb = V, so that at x = 0 and x = L, dU/dx = ktV/fib. It must be
borne in mind however that in a simply supported system V would be of opposite signs for
the two supports.

Computation

The dimensions of the section adopted for the computations are as follows:

t = 3 in., d = 6 in., Ac = 288 in 2
, As = 13 in 2

,

Ie = 864in4
, Is = 317in4

, L=216in., m=6'5,

Es = 13,000 ton/in 2
.

These are the dimensions of some of the test specimens of Balakrishnan for which he
gave the value of foundation modulus from pull-out tests on i-in. dia. studs as 446 ton/in
and the corresponding value of shear modulus as 1000 ton/in for studs spaced at 8·5 in.
centres in pairs. For the purpose of computation it is assumed that the two moduli bear a
constant relation for different stud spacing which would affect the value of c and k,. From
Balakrishnan's test results c = 0·0833 and k,/E s = 40·4 x 10- 4

. c is a nondimensional
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FIG. 4. Influence of c on interaction (point load at quarter span).
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parameter which depends on the properties of the composite section as well as the shear
modulus of the connexion and is given by
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Figure 4 gives the degree of interaction curves for various values of c. The curves arc
the same as those obtained from Newmarks theory which ignored uplift effects.

Figure 5 gives the slip distribution and Fig. 6 the uplift distribution along the length of a
beam for a point load at midspan, for c = 0·1 and k,/E, = 33·6 x 10 4 which represent a
slightly less degree of interaction than the values obtained from Balakrishnan's test results.
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FIG. 5. Slip distribution for poinI load at midspan.
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FIG. 6. Uplift distributions for point load at midspan.



Partial interaction between elastically connected elements of a composite beam 1133

Figures 7 and 8 give similar distributions for the case of a point load at t span point.
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FIG. 7. Slip distribution for point load at quarter span.
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FIG. 8. Uplift distributions for point load at quarter span.

Uplift distributions obtained from the analysis are similar to the ones obtained by
Gogoi [5] who took account only of differential deflexion.

In the case of composite beams, there arises the problem of estimating the true foun
dation modulus to use in computations for regions of negative uplift. The current analysis
assumes a constant value offoundation modulus throughout the length of a beam which has
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resulted in very high negative uplifts near the supports. Although negative uplifts had been
recorded near the supports of simply supported beams in experiments, magnitudes of
experimental values are much less than the theory predicts.

Figure 9 shows the ratio of steel bottom flange stress at partial interaction with steel
bottom flange stress at full interaction for three loading cases. The adverse effect on steel
bottom flange stress of partial interaction is least under uniformly distributed loading and
highest under quarter span point loading. Also for a high degree of interaction to be
achieved in respect of bending stress c must be of the order 0·01. This represents a high
shear modulus which may not be easily realised in practice.

Load at ~

1·11---·_·_··~-+--

C

FIG. 9. Variation ofmaximum steel bottom flange stress as a ratio of maximum steel bottom flange stress
for full interaction with c.

CONCLUSION

A theory is given which permits the analysis of composite beam elements without
making the usual simplifying assumptions of previous theories. If shear lag effects are
neglected it is now possible to undertake an analytical study of partial interaction in
composite beams that would take into account effects of differential deflexion as well as
differential strains at the common interface and interface friction in one theory. The method
of computation would permit the use of variable shear foundation modulus along the
length of a beam.
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A6cTpaKT-Pa6oTa 3aHHMaeTCH, fJIaBHblM o6pa30M, 3JIeMeHTaMH 6aJIOK COCTOHmHX H3 CTaJIH H 6eToHa.
TIpHBO.D:HTCH TeopHll B3aHMO.D:di:CTHll, KOTopaH npHHHMaeT BO BHHMaHHe 3$<PeKTbl CKOJIblKeHHll, B36poca
H Cl.\tlnJIeHHll, HO He Y'iHTbIBaeT paBHblX KpHBH3H· B3aHMO.D:ei!:cTBHH 3JIeMeHTOB, KaK 3TO 6b1JIO B
cymecTBylOmHX. B HaCTOHmee BpeMH. TCOpHHX. CHCTeMa .D:ByX pe3YJIbTHPYlOmHX .D:H$<PepeHUHaJIbHhlX
ypaBHeHHH., KaCalOmallCH paCTHlKeHHH npH B36poce. HBJIlllOmerOCH pe3ynBTaToM .D:H$<PepeHUHaJIbMbIX
npom60B JIByX 3JIeMeHTOB. no.D: BJIHHHHeM OceBOi!: CHnbl BHyTpH KalK,ll,OfO 3JIeMeHTa, Onpe,ll,enHeTCH C
nOMOmblO MeTO.D:a KOHe'iHbIX pa3HocTei!:.

TIpe.D:CTaBJIllIOTCli pe3YJIbTaTbl paC'ieTOB .D:JIH THnH'iHoi!: cocTaBHoi!: CeKI.\HH. OHH KaCalOTCli cny'iaH
HyJIeBOfO K03<P$HUHeHTa CuenJIeHHll H onpe.D:eJllllOTCH Ha HaH..D:eHHOM 3KcnepHMeHTaJIbHO BJIIO'ieHHIO
C.D:BHTa H MO.n:yJIHX OCHOBaHHll.


